Seeing the trees through the forest: sequence-based homo- and heteromeric protein-protein interaction sites prediction using random forest

نویسندگان

  • Qingzhen Hou
  • Paul F. G. De Geest
  • Wim F. Vranken
  • Jaap Heringa
  • K. Anton Feenstra
چکیده

Motivation Genome sequencing is producing an ever-increasing amount of associated protein sequences. Few of these sequences have experimentally validated annotations, however, and computational predictions are becoming increasingly successful in producing such annotations. One key challenge remains the prediction of the amino acids in a given protein sequence that are involved in protein-protein interactions. Such predictions are typically based on machine learning methods that take advantage of the properties and sequence positions of amino acids that are known to be involved in interaction. In this paper, we evaluate the importance of various features using Random Forest (RF), and include as a novel feature backbone flexibility predicted from sequences to further optimise protein interface prediction. Results We observe that there is no single sequence feature that enables pinpointing interacting sites in our Random Forest models. However, combining different properties does increase the performance of interface prediction. Our homomeric-trained RF interface predictor is able to distinguish interface from non-interface residues with an area under the ROC curve of 0.72 in a homomeric test-set. The heteromeric-trained RF interface predictor performs better than existing predictors on a independent heteromeric test-set. We trained a more general predictor on the combined homomeric and heteromeric dataset, and show that in addition to predicting homomeric interfaces, it is also able to pinpoint interface residues in heterodimers. This suggests that our random forest model and the features included capture common properties of both homodimer and heterodimer interfaces. Availability and Implementation The predictors and test datasets used in our analyses are freely available ( http://www.ibi.vu.nl/downloads/RF_PPI/ ). Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in diff...

متن کامل

Propensity based classification: Dehalogenase and non-dehalogenase enzymes

The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...

متن کامل

Sequence-based prediction of protein interaction sites with an integrative method

MOTIVATION Identification of protein interaction sites has significant impact on understanding protein function, elucidating signal transduction networks and drug design studies. With the exponentially growing protein sequence data, predictive methods using sequence information only for protein interaction site prediction have drawn increasing interest. In this article, we propose a predictive ...

متن کامل

Small Random Forest Models for Effective Chemogenomic Active Learning

The identification of new compound-protein interactions has long been the fundamental quest in the field of medicinal chemistry. With increasing amounts of biochemical data, advanced machine learning techniques such as active learning have been proven to be beneficial for building high-performance prediction models upon subsets of such complex data. In a recently published paper, chemogenomic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 33 10  شماره 

صفحات  -

تاریخ انتشار 2017